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This paper deals with the relationship of recent advances in opti-
mization theory, algorithms, and computation to problems of engineering
design. The use of point-based optimality criteria for sensitivity anal-
ysis is discussed using as an example the design of a cylindrical torsion
bar. The use of branch and bound methods for handling nonconvex program-
ming problems to get around the problem of multiple local solutions is
illustrated with a problem of reservoir design. An automatic procedure
based on a new language for describing mathematical functions is shown as
a way to interface between algebraic descriptions of design problems and
computer codes implementing more powerful algorithms. This is illustrated
by a problem in the design of a space launch vehicle. The zapability of
converting any optimization problem to a separable problem--thus facil-
itating the computerized description of the problem--is illustrated by
aspects of the design of a vertical corrugated transverse bulkhead.
Finally, comments are made concerning the future relationship between
optimal engineering design problems and algorithme for solving them.
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ALGORITHMIC AND COMPUTATIONAL ASPECTS
OF THE USE OF OPTIMIZATION METHOLS
IN ENGINEERING DESIGN

by
Garth P. McCormick

1. Introduction

Since the second world war, spurred by the development and availabil-
ity of computers there has been an increased effort directed toward developing
methodology for solving optimization problems, Froblems for solution have
originated from two groups., The first, composed of economists, operations
research analysts, management scientists, and planners has been concerned with
the problem of how best to allocate scarce resources. Since the functional
relationships in this area are not known, this group has, in the main, been
content to develop programming models having only linear relationships. The
success of computer codes implementing versions of the Simplex method for
solving linear programming problems has reinforced the basic orienf.ation of
this group.

The second group, with a longer history, is composed of physicists,
chemists, engineers, and other scientists. The problems of interest to this

group contain functional relationships which, because of physical laws, are

exact, and which contain nonlinear effects. Engineering optimization problems .

are usually ones of design, Although much thought and time has been put into
the geometric and algebraic descriptions of these problems, little has been
done in a systematic way to attack these problems using recent algorithmic

and computational advances in nonlinear progrsmming.

It 1s the intent of this paper to show how this might be done.

IE -
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; 2. Sensitivity Analysis
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Rarely is a person with a design model interested in the aolution to

T

one optimization problem. Of equal interest usually are changas in the op-

timal design which obtain when various aspects of the model are alterad.
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One way to obrain this information is to solve many optimization puv' i-ms

€t o R A

containing systematic variations of the input parameters of the model and

Lo sl

: observe the changes in design. i

-
i

Another way, based on reccnt developments in the theory characterizing

A i i

a solution to an optimization problem is to use information available at the
solution to a particular problem and generate a matrix which can be used

independently to assess all the design changes effected by small simultanecus

input parameter changes. The theory of this approach is contained in [3, Sec~
tion 2.4]. The practial use of this approach is demonstrated by the following

]

El

| i

v example taken from Pascual [7, p. 24}, and Johnson [4, pp. 290-291]. -4

Example 1 [Optimal Design of a Cylindrical Torsion Bar)

; The problem is to find the diameter (d) and the length (L) of a cylin-
drical torsion bar which will ‘ransmit a wvirtually constant twisting torque

(T), heve a specified torsional rigidity (k), and for which the weight of the

:

E bar will be minimal over all those having these properties.

3

? The mathematical programming problem is

§ pinimize W = wrd?L/4 ' (1)

g (d,L) i

é subject to the constraints g
- t !

¢ 16T/7d’ SS /N, (2)

-2

Lo inbl i, AUIDSRCETRE Ty o (e




T-263

. Here
W = weight of the torsion bar,
d = diameter of the torsion bar,
; L = length of the torsion bar,
) w = gpecific weight of the torsion bar,
: G = modulus of elasticity in shear (or modulus of rigidity),
% St =« published yieid strength of the material,
{ N = given factor of safety based on the occurrence of yielding as the

failure phenomenon,

T = the torque, and

B Lo

k = the prescribed torsional rigidity.
The expression for weight in (1) is simply the volume of the cylin-
drical torsion bar timea the specific density. The expreasion on the left of

(2) glves the meximum state of shear stress experienced by the bar for the

applied torque T ., This occurs at the outer edge of the bar and is the same
along its length., This muet.not exceed the experimentally determined yield
point of the bar or permanent distortion will result., Equation (J) gives the
torsional rigidity which is a function of the diameter of the bar as well as
its modulus of rigidity. The higher the k valuc the less temporary defor-

mation is experienced by the bar when torque is applied to it.

For this model, values of the parametersv used were w = 490 1ba/ft3 v

G = 11.5 x 10° pst, S_ = 35,000 psi, N = 2, T = 1000 lb=in, and k = 10° lb-in,

For purposes of convenience the problem is revricten

minimize wwdzL/b
(d,L) 5

subject to wd’S, - 32T 2 0 , (4)

21k - ﬂdAG =0, (5)
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The solution to this problem occurs at (d",L") = (.834937,5.486689,,
(both quantities in inches). The generalized Lagrange multiplier associated
with the inequaiity constraint is u; » ,186342 x 10‘3, and the Lagrange
multiplier associated with the equality const;aint has a value w; » ,485175
-6

x 10 ¥ . These are the values for which the gradient of the Lagrangian func-

tion 2 3 4
Gt(d,L,ul,wl) = wnd“L/4 - ul(ﬂd St-32NT) + wl(BZLk—ﬂd G)

vanishes, i.e,, for which

wrdlL/2 3ﬁdzst ~4nd G 0

- u, + w, = R
wrd?/4 0 1 32k 0

The interpretation of the Lagrance rultiplier is well-known. If the
right hana side of (4) is changed to & , then the solution to the perturbed
problem has an optimal objective function value which differs from that of
the problem just solved by approximately GuI « What is not eo well~known is
that information is available to angwer the question of how the minimizing
point itself changes when general perturbations are placed on the above
problem,

To illustrate this without giving the general formulation which is
contained in [3, section 2.4], suppose the question was posed for the above
example how muc: would the solution change if the torsional rigidity require-
ment (k) were changed from 100,000 lb-in to 162,000 1lb=-in and simultaneously
the torque (T) from 1000 lb-in to 1030,301 ib=-in ?

From the general theory in [3]) we obtain the result that the problem
resulting from the replacement in (4) of T by T + AT , and in (5) k by
k + 4k resulta in a new minimizing vector and assoclated Lagrange multipliers

which can be approximated from those of the original problem by the expression

-4-
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“w) [ *  h k2 k * * 2 * i B
a"| fumL/2-6nd"s ui-120a" %6u], wrd'/2, ~3n(d) %, -4nca y3d | o, 0
AT
* * *
L] fwrd"/2 , 0 , 0 ., 3% 0, 32w
+ 1 tk
& k. %2 *
uy u1(3n(a ) St) , 0 , 0 . 0 64u1, 0
- R * *
Lkel ~am(d) e , 32, 0 ., 0 0, -32L
et e - L wd .

Using AT = 30,301, and Ak = 2,000, computation of the above quantities
yields the expected change in the optimal d and L as (,00843,,11193) .
For comparison purposes, the perturbed problem has a golution which differs
from the original one by (.00834,,11083).. Thus the approximation agrees
with the exact change to about 3 gignificant figures,

In some problems it is not a priori obvious cven the direction of
change of the problem solution when the values of many parameters are changed
simultaneously. The use of sensitivity information should have wide appli-

cation in the area of engineering design,
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3. Obtaining Global as Opposed to Local Solutions by Use of Branch and

Bound Techmiques

Most algorithms for solving nonlinear programming problems are only

; ; guaranteed to find global (as opposed to local) solutions when the problem

‘ functions describe a convex programming problem, Problems which can trap an
algorithm at a local solution often arise when the objective function (to be
minimized) i3 a total cost function with decreasing marginal costs, A simple
picture 18 contained irn Figure 1. The curve shown in Figure 1 is concave
whereas 1f {t were convex, its use in an optimization problem would cause no
difficulty, To illustrate the difficulties this can cause and also to 1llus-
trate the increasingly important branch and bound approach for solving these
: problems we consider the following example. It is taken from the area of

i water pollution control which 1s becowing a source of optimization problems

which involve both groups of people, the social and physical scientists men-

% tioned in the introduction,

Example 2 [Optimal Reservoir Design]

The concentration of dissolved oxygen in the water of & certain section
} of a river is beluow the acceptable level due to pollution of the river, It

i is desired to increase the level of dissolved oxygen to the acceptable level

E é by buildingreservoirs at one Or more upstream points of the river so as to be
; able to augment the river flow and dilute the wastes.

Although the original model contained many sites, for fllustrative

15k i Lot i

pusposes we consider an idealized model with two sites. Let x, be the flow

3
! augmentation at site j, 3 = 1,2, and lxi25 be the cost to build a ‘reservoir

at site 1 to augment the flow by amount X and let 2x£25 be the cost to




»
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total cost to build
a raservoir which
augment# flow by an
amount %

Figure 1.

T-263

flow augmentation x

A Concave Function of One Variable
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build a ressrvoir at site 2 to augment the flow by amount x Assume that

2 .
the required augmentation is 3. Algebraically stated then the optimization

* *
problem is to find ) and  x, which minimize the total cost

] «25
lxl + 2x2
aubject tv the constraluts
X + %, 2 3, Xy 2 Uy Xy 2 0, X & 6, x, 2 5.

1he region of feasible points along with two curves of constant costs are
plotted in Figure 2.

It is obvious that (0,3) and (3,0) are local solutions to the problem,
i.e., that in a region about either point all information indicates that that
point is a solution. Just about any algorithm which tries to solve this prob-
lem will go to either solution depending upon the initial scarting point. A
.uarantee of the ability of an algorithm to obtain a gilobal (as opposed to
local) solution is required.

Recently branch and bcnd methodology [1], [9] has been applied to
problems of the above form in order to guarantee convergence to a global solu-
tion. Rather than define what a branch and bound method is in general, the
problem just stated will be solved by such an algorithm,

The basic branch sud bound appreoach for solving the nonconvex program-
ming problem i8 to solve a sequence of underestimating convex programming
problems which apply to subregions of the feasible region. A sequence of
underestimating values for the solution of the original problem is created
which approaches the optimal value from belew, First a convex (in this case
linear) underestimate is generated of the objective function in the rectangle

0 5% = 6, 0 < x, <5 . Figures 3 and 4 show that the linear function

.408x1 is a linemar underestimate of the function xis in the intervail

-8 -
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Figure 3. Concave Function of Xy wvith Underestimating
Convex Envelope
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Figure 4. Concave Function of X, with Underestimating
Convex Envelope
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[0,6] , and that .598x, 1s a linear underestimate of 2x525 in the interval
{0,5] . 1In fact these straight lines are the highest convex functions which
underestimate the original ones in those intervals.
The following programming ovroblem is an underestimating convex (linear
in this case) programming problem for the original nonconvex one, Find

values of xl and x, which

minimize .408x1 + .598x2
subject to the constraints
X + Xy 2 3, 0 ¢ X £ 6, 0 ¢ X, £ 5.

The solution to this problem is at x* = (3,0) , with an objective function
value (of the linear underestimating function) of 1.224. Thus we know that
the global minimizing value to the original problem is bounded below by 1,224,
The next step in the procedure is to divide the original rectangle into
two parts and solve an underestimating problem for each part which is 'closer
to' the original problem than the first underestimating problem solved above.
The decision on how to divide is made by choosing that variable for which the
difference in function values between the underestimating function and the
origiral function is greatest., Using this criterion, the decision is made to
split the original rectangle into two parts on X0 yielding the new sets of
constraints O ¢ L 3, 0 2%, < 5, and 3 < x

<6, 0<x, <5, Using the

1 2

same approach for generating convex underestimating envelopes the first new
programming problem to be solved is

minimize .577x1 + .593x2

subject to 0 < x, <3,0 <x, <35, x, +x

2 = 1 2=

v
L%

1

which has a solution at (3,0) with solution vaiue 1.732,

T

i
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The problem associated with the other rectangle 1is

minimize 1,015 + .239x1 + .598x2
subject to 3 g S 6, 0 2 Xy & 5, X+ %, 2 3

which has a solution at (3,0) with solution value 1,732 also. Since both
values are lower bounds to the global optimum, and since (3)'5 + 2(0)'25 -
1,732 , the global solution has been obtained.

Branch and bound techniques can also be used to handle problems which
are not well-behaved in that the functions lack the proper smoothness or
continuity properties. Also, these techniques to date are the most successful
approaches for solving counbinatorial problems, e.g., problems where the diffi-
culty is in ascertaining the grder in which activities are to be performed,

or whether or not to perform them rather than the optimal level of any activ-

ity.

-12 -
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4, Computer Code-~Optimization Model Interface

A major hurdle to the computer solution of nonlinear optimization
problems in engineering design is the lack of an automated procedure for
giving codes all the inputs an algorithm needs to solve the problem, For
example, the branch and bound procedure applied to the problem in the previous

section 1s general enough to soclve separable programming problems of the form

n
minimize zj-l fj(xj)

subject to E?;l sij(xj) 20, 1i=1,,..,,m,

A further requirement is that for any function, say fj(xj) in any given

interval [LJ ] , the user must supply a function d,(x,) which is the

I

j(xj) in the interval., That is, one must supply to the

computer code implementing the branch and bound method the highest convex

IUJ

convex envelope of f

j(xj) in that interval.

For another example, the code implementing the sequential uiiconstrained

envelope which underestimates the function £

minimization technique (SIMT) [5], [3] requires the user to supply the first
derivatives of the problem functions. To be efficient, the code asks the user
to supply the second derivatives. A certain amount of this trouble can be
avolded by the use of difference approximations instead of the analytic forms,
but it is no wonder that engineers in the design area are more inclined to use
heuristically based algorithms such as the SIMPLEX SEARCH method [6] for
solving thelr optimization problems which require only function values,

One solution to this problem hes been the development of a language [8]
and a computer program which automatically computes first and second deriva-
tives of an algebraic ?xpression when the problem functions are written down

in the language by the user. In (6) is an expression giving the first stage

-13 -
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é | velocity of a three stage space launch vehicle as a function of design vari-
% ables written in this language. The FORTRAN~like expression is
X(14) MTIAGBAR®LIG (L. /X(13)) /X(15) . 6
% where
. X(14) = stage 1 total thrust in thousands of pounds,

Tl = stage 1 burn time in seconds,

X(13) = stage 1 mass fraction (dimensionless),

GBAR = gravity constant, and

i L@G = natural logarithm function.

ot a1t i, s A,

The first four quantities above are design variables of the optimization model
(1, Chapter 2], which was to produce a ninimum cost design satisfying certain
performance characteristics. Its solution using SUMT required the supplying
of a computer program for the analytic derivatives of axpreesions like the
,; one in (6), This was an extremely time consuming and an error prone enter~
prise, Using the new language, such model implementation is much more feasible.

Another approach to this problem now under consideration is to first

convert the programming problem into a separable problem and devise a card

format for separable terms allowing for any conveivable functions of a single

e —— gt e

variable, Computer routines could be coded and used to compute tha deriva-
tives, first and second, and the convex envelopes of functions of a single
variable.,

The general procedure for converting an optimization problem to a

separable problem is to add variables and increase the number of constraints.
As an example, consider the following which expresses the requirement that
the gection modulus of a vertical transverse corrugated bulkhead satisfy 1

certain rules contained in Qgg Norske Veritas. The inequality is [1, p. 56],

3
! | -1 -
!

1
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%xzxaxl‘ + % X, X3%, -~ khtﬂ.i [xl + (xg-x:z’)l/z] 20.
This constraint can be 'separated' by the addition of three more variables
and three constraints. 7The resulting constraints are

2
].m:3 + lnx, + x¢ = ln(khtzt) - lax, 2 0,

x1+x6-xl.
%xz+%xl-ex5
2 2 2
xz—xs.XG.

* A computer code can probably be developed to take the functions written

in the language described in [8] and do the conversions required to separate

the problem,
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5. Conclusion

In this paper, a brief summary of some recent powerful theoretical
toola for sensitivity analysis in engineering design, and recent globally
convergent algorithms for solving optimization problems have been given,
The barrier to using these tools and other recent algorithms for solving
problems is the lack of a readily available, easily used language in which
to describe the optimization models. T~ ‘anguage developed by Pugh [8] is
a step toward eliminating this barrier. ~.ture progress will depend in
large part on bringing together those with the algorithmic ability, those
with the design optimization problems, and those with the capability of

developing computer systems.
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